| Model | Feature Selection | Settings | Metrics |
|---|---|---|---|
| Model #1 Random Forest Regressor |
• Correlation screen (top 25 numeric) • Permutation importance filter |
• 300 trees • max_depth = None • min_samples_leaf = 1 • random_state = 42 |
MAE ≈ $17,980
R² ≈ 0.89
|
| Model #2 Random Forest Classifier |
• Chi-square test (top 40 categories) • ANOVA F-test (top 15 numeric) |
• 300 trees • class_weight = 'balanced' • max_depth = None • random_state = 42 |
Accuracy ≈ 0.86
Macro-AUC ≈ 0.93
|
| Model #3 DNN Regressor |
• PCA (95% variance ≈120 components) • Dropout filter (0.3) |
• Layers: [256, 128, 64] • Activation: ReLU + batch norm • Dropout: 40% • Adam optimizer (1e-3) • 250 epochs, early stop = 20 |
MAE ≈ $16,300
R² ≈ 0.91
|
| Model #4 DNN Classifier |
• Chi-square test • Mutual information score |
• Layers: [192, 96, 48] • Activation: ReLU + batch norm • Output: Softmax • Loss: Categorical cross-entropy • Similar optimizer settings |
Accuracy ≈ 0.88
Macro-AUC ≈ 0.95
|
Student ID: 003799897