Model Performance Comparison Table

Model Feature Selection Settings Metrics
Model #1
Random Forest Regressor
• Correlation screen (top 25 numeric) • Permutation importance filter • 300 trees
• max_depth = None
• min_samples_leaf = 1
• random_state = 42
MAE ≈ $17,980
R² ≈ 0.89
Model #2
Random Forest Classifier
• Chi-square test (top 40 categories) • ANOVA F-test (top 15 numeric) • 300 trees
• class_weight = 'balanced'
• max_depth = None
• random_state = 42
Accuracy ≈ 0.86
Macro-AUC ≈ 0.93
Model #3
DNN Regressor
• PCA (95% variance ≈120 components) • Dropout filter (0.3) • Layers: [256, 128, 64]
• Activation: ReLU + batch norm
• Dropout: 40%
• Adam optimizer (1e-3)
• 250 epochs, early stop = 20
MAE ≈ $16,300
R² ≈ 0.91
Model #4
DNN Classifier
• Chi-square test • Mutual information score • Layers: [192, 96, 48]
• Activation: ReLU + batch norm
• Output: Softmax
• Loss: Categorical cross-entropy
• Similar optimizer settings
Accuracy ≈ 0.88
Macro-AUC ≈ 0.95

Key Findings:

Student ID: 003799897